Two-step Nonnegative Matrix Factorization Algorithm for the Approximate Realization of Hidden Markov Models
نویسندگان
چکیده
We propose a two-step algorithm for the construction of a Hidden Markov Model (HMM) of assigned size, i.e. cardinality of the state space of the underlying Markov chain, whose n-dimensional distribution is closest in divergence to a given distribution. The algorithm is based on the factorization of a pseudo Hankel matrix, defined in terms of the given distribution, into the product of a tall and a wide nonnegative matrix. The implementation is based on the nonnegative matrix factorization (NMF) algorithm. To evaluate the performance of our algorithm we produced some numerical simulations in the context of HMM order reduction.
منابع مشابه
Approximate Nonnegative Matrix Factorization via Alternating Minimization
In this paper we consider the Nonnegative Matrix Factorization (NMF) problem: given an (elementwise) nonnegative matrix V ∈ R + find, for assigned k, nonnegative matrices W ∈ R + and H ∈ R k×n + such that V = WH . Exact, non trivial, nonnegative factorizations do not always exist, hence it is interesting to pose the approximate NMF problem. The criterion which is commonly employed is I-divergen...
متن کاملApproximation of stationary processes by hidden Markov models
We propose an algorithm for the construction of a Hidden Markov Model (HMM) of assigned complexity (number of states of the underlying Markov chain) which best approximates, in Kullback-Leibler divergence rate, a given stationary process. We establish, under mild conditions, the existence of the divergence rate between a stationary process and an HMM, and approximate it with a properly defined ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملAn Online Expectation-Maximisation Algorithm for Nonnegative Matrix Factorisation Models
In this paper we formulate the nonnegative matrix factorisation (NMF) problem as a maximum likelihood estimation problem for hidden Markov models and propose online expectation-maximisation (EM) algorithms to estimate the NMF and the other unknown static parameters. We also propose a sequential Monte Carlo approximation of our online EM algorithm. We show the performance of the proposed method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010